Abstract

The recent advances in deep convolutional neural networks (DCNNs) have convincingly demonstrated high-capability reconstruction for single image super-resolution (SR). However, it is a big challenge for most DCNNs-based SR models when the scaling factor increases. In this paper, we propose a novel Progressive Residual Network (PRNet) to integrate hierarchical and scale features for single image SR, which works well for both small and large scaling factors. Specifically, we introduce a Progressive Residual Module (PRM) to extract local multi-scale features through dense connected up-sampling convolution layers. Meanwhile, by embedding residual learning into each module, the relative information between high-resolution and low-resolution multi-scale features is fully exploited to boost reconstruction performance. Finally, the scale-specific features are fused to the reconstruction module for restoring the high-quality image. Extensive quantitative and qualitative evaluations on benchmark datasets illustrate that our PRNet achieves superior performance and in particular obtains new state-of-the-art results for large scaling factors such as 4 × and 8 ×.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.