Abstract

Growth/differentiation factor-15 (GDF-15) is a widely expressed distant member of the TGF-beta superfamily with prominent neurotrophic effects on midbrain dopaminergic neurons. We show here that GDF-15-deficient mice exhibit progressive postnatal losses of spinal, facial, and trigeminal motoneurons. This deficit reaches a approximately 20% maximum at 6 months and is accompanied by losses of motor axons and significant impairment of rotarod skills. Similarly, sensory neurons in dorsal root ganglia (L4, L5) are reduced by 20%, whereas sympathetic neurons are not affected. GDF-15 is expressed and secreted by Schwann cells, retrogradely transported along adult sciatic nerve axons, and promotes survival of axotomized facial neurons as well as cultured motor, sensory, and sympathetic neurons. Despite striking similarities in the GDF-15 and CNTF knock-out phenotypes, expression levels of CNTF and other neurotrophic factors in the sciatic nerve were unaltered suggesting that GDF-15 is a genuine novel trophic factor for motor and sensory neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call