Abstract

Effective malaria control programs require continuous monitoring of drug pressure in the field, using molecular markers. We used sequence analysis to investigate the pfcrt and pfmdr1 mutations in Indian Plasmodium falciparum isolates. To evaluate the chloroquine drug pressure in the field, isolates were collected from 5 different areas at 2 time points, with an interval of 2 years. In 265 P. falciparum isolates, pfcrt mutations were observed at codons 72, 74, 75, 76, and 220, resulting in 8 different genotypes: SMNTS (61.89%), CIETS (12.08%), CMNKS (0.38%), CMNTA (2.64%), CMNTS (4.91%), SMNTA (0.38%), CIDTS (2.26%), and wild-type CMNKA (15.47%). During the 2-year period, there was a significant decrease in the number of isolates with the SMNTS genotype and an increase in the number of isolates with the highly chloroquine-resistant pfcrt genotype CIETS (P < .05). The N86Y mutation was less prevalent (30.13%) than the Y184F mutation (99.16%) in the pfmdr1 gene in 239 isolates, but the number of isolates with the N86Y mutation increased significantly during the 2-year period (P < .05). The number of isolates with higher total numbers of pfcrt and pfmdr1 2-loci mutations, therefore, increased significantly during this period. There was a regional bias in the mutation rate of these genes, because isolates from areas where chloroquine resistance was high had higher numbers of 2-loci mutations, and areas where chloroquine resistance was low had isolates with lower numbers of 2-loci mutations. There was a temporal increase in the number of pfcrt and pfmdr1 2-loci mutations, and this led to the higher level of chloroquine resistance. This is a cause for concern for the antimalarial drug policy in India.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.