Abstract

Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical “small-world” architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical “small-world” architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

Highlights

  • Accumulated neuroimaging evidence has shown the presence of sexual dimorphism in brain structures that could underlie sex differences in behavior and cognition [1,2]

  • Gender differences in brain structures (especially involving white matter (WM)) have been largely derived from cross-sectional work [13,14] and there is a need for longitudinal investigation in order to provide a more comprehensive understanding of sex-specific architectural change that occurs throughout life [15]

  • The comparable and conserved small-world properties observed in this work further support these earlier studies and suggest that small-world topology is a fundamental principle for the anatomical organization of complex brain networks to maximize the power of information processing

Read more

Summary

Introduction

Accumulated neuroimaging evidence has shown the presence of sexual dimorphism in brain structures that could underlie sex differences in behavior and cognition [1,2]. Sex differences have been reported in specific brain structures, including corpus callosum, frontal forceps, and hippocampus [4]. Convergent evidence has emerged to show different developmental trajectories of the brain in males and females [6,7]. Gender differences in brain structures (especially involving white matter (WM)) have been largely derived from cross-sectional work [13,14] and there is a need for longitudinal investigation in order to provide a more comprehensive understanding of sex-specific architectural change that occurs throughout life [15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.