Abstract

BackgroundGlaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. DBA/2J inbred mice develop chronic hereditary glaucoma and are an important model system to study the molecular mechanisms underlying this disease and novel therapeutic interventions designed to attenuate the loss of retinal ganglion cells. Although the genetics of this disease in these mice are well characterized, the etiology of its progression, particularly with respect to retinal degeneration, is not. We have used two separate labeling techniques, post-mortem DiI labeling of axons and ganglion cell-specific expression of the βGeo reporter gene, to evaluate the time course of optic nerve degeneration and ganglion cell loss, respectively, in aging mice.ResultsOptic nerve degeneration, characterized by axon loss and gliosis is first apparent in mice between 8 and 9 months of age. Degeneration appears to follow a retrograde course with axons dying from their proximal ends toward the globe. Although nerve damage is typically bilateral, the progression of disease is asymmetric between the eyes of individual mice. Some nerves also exhibit focal preservation of tracts of axons generally in the nasal peripheral region. Ganglion cell loss, as a function of the loss of βGeo expression, is evident in some mice between 8 and 10 months of age and is prevalent in the majority of mice older than 10.5 months. Most eyes display a uniform loss of ganglion cells throughout the retina, but many younger mice exhibit focal loss of cells in sectors extending from the optic nerve head to the retinal periphery. Similar to what we observe in the optic nerves, ganglion cell loss is often asymmetric between the eyes of the same animal.ConclusionA comparison of the data collected from the two cohorts of mice used for this study suggests that the initial site of damage in this disease is to the axons in the optic nerve, followed by the subsequent death of the ganglion cell soma.

Highlights

  • Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis

  • Recessive inheritance of both of these mutant genes causes the breakdown of the iris stroma and the release of pigment clumps into the anterior chamber of the eye. The association of these proteins with melanosomes has lead to the theory that toxic byproducts generated by the biosynthesis of melanin are released from the melanosome leading to the atrophy of the iris. This disease resembles human pigment dispersion syndrome in that displaced pigment accumulates in the trabecular meshwork (TM) leading to elevated intraocular pressure (IOP) and glaucoma

  • Ganglion cell loss was followed as a function of histochemical staining activity of the ROSA3 (Fem1cR3/+) βGeo reporter gene product

Read more

Summary

Introduction

Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. BMC Neuroscience 2006, 7:66 http://www.biomedcentral.com/1471-2202/7/66 genes, Gpnmb and Tyrp, which encode a protein found in melanosomal membranes and an enzyme involved in melanin synthesis, respectively [2,3] Recessive inheritance of both of these mutant genes causes the breakdown of the iris stroma and the release of pigment clumps into the anterior chamber of the eye. The association of these proteins with melanosomes has lead to the theory that toxic byproducts generated by the biosynthesis of melanin are released from the melanosome leading to the atrophy of the iris In some respects, this disease resembles human pigment dispersion syndrome in that displaced pigment accumulates in the trabecular meshwork (TM) leading to elevated IOP and glaucoma. Bone marrow transplants into D2 mice, from genetically different donors, can effectively prevent the age-related decrease in immune privilege leading to a substantial reduction in both the anterior chamber disease and the subsequent increase in IOP

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call