Abstract

Compared to conventional semantic segmentation with pixel-level supervision, weakly supervised semantic segmentation (WSSS) with image-level labels poses the challenge that it commonly focuses on the most discriminative regions, resulting in a disparity between weakly and fully supervision scenarios. A typical manifestation is the diminished precision on object boundaries, leading to deteriorated accuracy of WSSS. To alleviate this issue, we propose to adaptively partition the image content into certain regions (e.g., confident foreground and background) and uncertain regions (e.g., object boundaries and misclassified categories) for separate processing. For uncertain cues, we propose an adaptive masking strategy and seek to recover the local information with self-distilled knowledge. We further assume that confident regions should be robust enough to preserve the global semantics, and introduce a complementary self-distillation method that constrains semantic consistency between confident regions and an augmented view with the same class labels. Extensive experiments conducted on PASCAL VOC 2012 and MS COCO 2014 demonstrate that our proposed single-stage approach for WSSS not only outperforms state-of-the-art counterparts but also surpasses multi-stage methods that trade complexity for accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.