Abstract

In the expansive domain of data-driven research, the curse of dimensionality poses challenges such as increased computational complexity, noise sensitivity, and the risk of overfitting models. Dimensionality reduction is vital to handle high-dimensional datasets effectively. The pilot study disease dataset (PSD) with 53 features contains patients with Rheumatoid Arthritis (RA) and Osteoarthritis (OA). Our work aims to reduce the dimension of the features in the PSD dataset, identify a suitable feature selection technique for the reduced-dimensional dataset, analyze an appropriate Machine Learning (ML) model, select significant features to predict the RA and OA disease and reveal significant features that predict the arthritis disease. The proposed study, Progressive Feature Reduction with Varied Missing Data (PFRVMD), was employed to reduce the dimension of features by using PCA loading scores in the random value imputed PSD dataset. Subsequently, notable feature selection methods, such as backward feature selection, the Boruta algorithm, the extra tree classifier, and forward feature selection, were implemented on the reduced-dimensional feature set. The significant features/biomarkers are obtained from the best feature selection technique. ML models such as the K-Nearest Neighbour Classifier (KNNC), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Naïve Bayes Classifier (NBC), Random Forest Classifier (RFC) and Support Vector Classifier (SVC) are used to determine the best feature selection method. The results indicated that the Extra Tree Classifier (ETC) is the promising feature selection method for the PSD dataset because the significant features obtained from ETC depicted the highest accuracy on SVC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.