Abstract

This paper microscopically investigated progressive failure characteristics of brittle rock under high-strain-rate compression using the bonded particle model (BPM). We considered the intact sample and the flawed sample loaded by split Hopkinson pressure bar respectively. Results showed that the progressive failure characteristics of the brittle rock highly depended on the strain rate. The intact sample first experienced in microcracking, then crack coalescing, and finally splitting into fragments. The total number of the micro cracks, the proportion of the shear cracks, the number of fragments and the strain at the peak stress all increased with the increasing strain rate. Also, a transition existed for the failure of the brittle rock from brittleness to ductility as the strain rate increased. For the flawed sample, the microcracking initiation position and the types of the formed macro cracks were influenced by the flaw angle in the initial stage. However, propagation of these early-formed macro cracks were prohibited in the later stages. New micro cracks were produced and then coalesced into diagonal macro cracks which could all form ‘X’-shape failure configuration regardless of the incline angle of the flaw. We explored micromechanics on progressive failure characteristics of the brittle rock under dynamic loads.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.