Abstract

This article presents progressive failure analysis of double-notched carbon/epoxy composite laminates with different scales. A numerical analysis strategy based on material property degradation method (MPDM) and cohesive elements (CE) is developed to model progressive failure of scaled double-notched composite laminates, where the material property degradation method is used to model the intralaminar failure and the cohesive elements are employed to account for the delamination at the interfaces. Different failure theories are considered in the material property degradation method–cohesive element approach and a comparative study of these failure theories is presented. The mesh dependency of the material property degradation method–cohesive element approach is investigated with different notch and element types for the double-notched composite laminates. Size scaling effects are also studied by traditional fracture models and the material property degradation method–cohesive element approach, significantly revealing a trend in strength reduction of notched composites with increasing specimen size. The predictions are compared with the experimental results and reasonably good agreement is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.