Abstract
Multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technology has become a promising solution in current wireless communication systems. However, the implementation of MIMO-OFDM systems imposes a heavy complexity burden of equalizer matrix calculation on the training symbols due to the strict processing delay requirement. This paper presents a progressive QRD based equalizer matrix calculation method, which can significantly reduce the computational complexity in the last training symbol by distributing the heavy equalizer matrix calculation over multiple training symbols. Our proposed method was verified in the IEEE 802.11ac systems which has tough latency constraint. For 4 × 4 antenna configurations, the computational complexity on the last training symbol can be reduced by up to 75% without any BER loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.