Abstract

An impairment of the mechanisms controlling the release of calcium from internal stores (excitation-contraction [EC] coupling) has been proposed to contribute to the age-related decline of muscle performance that accompanies aging (EC uncoupling theory). EC coupling in muscle fibers occurs at the junctions between sarcoplasmic reticulum and transverse tubules, in structures called calcium release units (CRUs). We studied the frequency, cellular localization, and ultrastructure of CRUs in human muscle biopsies from male and female participants with ages ranging from 28 to 83 years. Our results show significant alterations in the CRUs' morphology and cellular disposition, and a significant decrease in their frequency between control and aged samples: 24.4/100 microm(2) (n = 2) versus 11.6/100 microm(2) (n = 7). These data indicate that in aging humans the EC coupling apparatus undergoes a partial disarrangement and a spatial reorganization that could interfere with an efficient delivery of Ca(2+) ions to the contractile proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.