Abstract

AbstractTime-calibrated balanced-cross sections of the eastern Fuegian Thrust–Fold Belt reveal many complex pro- and retro-vergent structures, rooted at the base of Cretaceous and within Paleocene rocks. These structures involve the unconformity-bounded syntectonic sequences of the Austral foreland basin, and accommodate a minimum shortening of c. 41.8 km. The complex kinematics of the thrust–fold belt are recorded by: (1) propagation of the basal décollement into the foreland, and forward-directed thrusting during the Ypresian; (2) out-of-sequence thrusting in the Lutetian; (3) subsidence and sedimentation from the Late Lutetian to the Oligocene; (4) backthrusting during the Oligocene; and (5) a renewed stage of forward-directed thrusting between the latest Oligocene and the Early Miocene, probably related to accretion below the sole fault in the hinterland. This thrust sequence is interpreted as the result of critical Coulomb wedge behaviour during the first stage of thrust–fold belt expansion, with accretion of new material that led to a taper decrease. The subsequent period of internal deformation corresponds to a subcritical stage, during which backthrusting accommodates significant shortening (c. 15%). After growth and taper increase, the last period of forward thrusting at the wedge's front marks the inception of a new critical stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call