Abstract

Abstract The objective of this paper is to investigate the progressive failure behaviour of laminated cylindrical/conical panels under meridional compression considering geometric nonlinearity and evolving material damage. The evolving microscopic damage such as fiber breakage, matrix cracking, fiber matrix debonding etc. is modeled through a generalized macroscopic continuum theory within the framework of irreversible thermodynamics. The analysis is carried out using field consistent finite element approach based on first-order shear deformation theory. The nonlinear governing equations are solved using the Newton–Raphson iterative technique coupled with the adaptive displacement control method to trace the equilibrium path. The damage evolution equations are solved at every Gauss point using Newton–Raphson iterative technique within each iteration of a loading/displacement increment. To accurately model the transverse shear strain energy, shear correction factors are calculated using layers' properties and lamination scheme. The detailed study is carried out to highlight the influences of evolving damage, span-to-thickness ratio, lamination scheme, radius-to-span ratio, boundary conditions and semi-cone angle on the postbuckling response and failure load of laminated panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.