Abstract

Abstract This paper presents an anisotropic damage model suitable for predicting failure and post-failure behavior in fiber-reinforced materials. In the model the plane stress formulation is used and the response of the undamaged material is assumed to be linearly elastic. The model is intended to predict behavior of elastic-brittle materials that show no significant plastic deformation before failure. Four different failure modes – fiber tension, fiber compression, matrix tension, and matrix compression – are considered and modeled separately. The onset of damage is predicted using Hashin’s initiation criteria [Hashin Z, Rotem A. A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 1973;7:448; Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech 1980;47:329–34] and the progression of damage is controlled by a new damage evolution law, which is easy to implement in a finite element code. The evolution law is based on fracture energy dissipation during the damage process and the increase in damage is controlled by equivalent displacements. The issues related to numerical implementation, such as mesh sensitivity and convergence in the softening regime, are also addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call