Abstract

The present paper describes an experimental and numerical investigation on energy absorbers for Formula One side impact and steering column impact. The crash tests are performed measuring the load-shortening diagram and the energy absorbed by the structure. A finite element model is then developed using the non-linear, explicit dynamic code LS-DYNA. To set up the numerical model, tubes crushing testing are conducted to determine the material failure modes and to characterise them with LS-DYNA. The results presented in this study show that the composite structural components of the investigated Formula One racing car possess high value of specific absorbed energy and crash load efficiency around 1.1. The finite element simulations accurately predict the overall shape, magnitude and pulse duration in all the types of impact as well as the deformation and failure of the structures. Comparing the numerical data of the specific absorbed energy to the experimental results, the differences are around 10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.