Abstract
With no beams, reinforced concrete flat slab buildings are typically built to advance urban growth and to meet the architectural needs of large spans and low storey heights. Its behaviour to avoid a progressive collapse must therefore be investigated. In this research, the progressive collapse resistance of six-storey RC flat slab buildings with varying span lengths and floor heights is assessed by subjecting the building to three different instances of instantaneous removal of columns in the first storey, performing dynamic progressive collapse analysis as per GSA guidelines, and comparing the evaluated joint displacements and chord rotations at column removal locations with the permissible chord rotation for flat slab buildings as per DoD guidelines. The results have shown that the studied flat slab building with all different span lengths and floor heights is prone to progressive collapse. It is also observed that the vertical displacements and chord rotations at column removal positions increase as the span lengths and storey heights are increased alternately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.