Abstract
AbstractPrestressed concrete frames with infill walls (IW‐PC frames) are commonly used in civil engineering as a structural element. The possibility of structures undergoing progressive collapse is a cause for concern due to its severe consequences. This has become a significant topic in the academic community in recent years. However, research on the resistance of IW‐PC frame structures to progressive collapse is still insufficient. Therefore, this paper investigated the dynamic effects of progressive collapse on the IW‐PC frame, reinforced concrete frame with infill walls (IW‐RC), prestressed concrete frame (PC), and common reinforced concrete frame (RC). The study was conducted using the finite element software OpenSees. The study revealed that the vertical displacement during stabilization of the IW‐PC frame increased by 92.5% and 71.7% compared to the IW‐RC frame and decreased by 93.9% and 92.6% compared to the PC frame for middle column and side column failure, respectively. Additionally, the IW‐PC frame exhibited the highest dynamic load carrying capacity, which was 7.67 and 7.56 times higher than that of the RC frame, respectively. The mechanical properties of the frame were altered by the coupling effect of prestressed tendons and infill walls, making the IW‐PC frame more monolithic.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Structural Design of Tall and Special Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.