Abstract

The understanding of lithium (Li) nucleation and growth is important to design better electrodes for high-performance batteries. However, the study of Li nucleation process is still limited because of the lack of imaging tools that can provide information of the entire dynamic process. We developed and used an operando reflection interference microscope (RIM) that enables real-time imaging and tracking the Li nucleation dynamics at a single nanoparticle level. This dynamic and operando imaging platform provides us with critical capabilities to continuously monitor and study the Li nucleation process. We find that the formation of initial Li nuclei is not at the exact same time point, and Li nucleation process shows the properties of both progressive and instantaneous nucleation. In addition, the RIM allows us to track the individual Li nucleus's growth and extract spatially resolved overpotential map. The nonuniform overpotential map indicates that the localized electrochemical environments substantially influence the Li nucleation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.