Abstract

A progressive aggregation-induced emission (AIE) strategy is established based on two diverse stimulus-responsive patterns of copper nanoclusters (CuNCs) for imaging of aluminum ions (Al3+) in cellular microenvironment. The non-emissive CuNCs were facilely synthesized with l-glutathione (GSH) as both stabilizing agent and reducing agent, and demonstrated the excellent AIE characteristics in the ethanol/water mixture. Moreover, the dispersed CuNCs can be aggregated to give the AIE behavior in aqueous solutions by reducing the pH value, and could be further aggregated with 94-fold reinforce by introducing Al3+ ascribe to the strong coordination ability between Al3+ and the functional groups of GSH, demonstrating the progressive AIE process. Under endocytosis, the progressive AIE strategy can be employed to distinguish the Al3+ in the locations of lysosome against other organelles due to the acidic microenvironment of lysosome. The progressive AIE advantages of CuNCs provide a new concept for signal transduction, and have the promising applications in decoding the functions of intracellular biomolecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call