Abstract

We aimed to evaluate [3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-0-11C-methyloxime] ([11C]ABP688) small animal positron emission tomography (μPET) as a biomarker to visualize possible longitudinal changes in metabotropic glutamate receptor 5 (mGluR5) availability in the brain of SAP90/PSD-95 associated protein 3 (Sapap3) knockout (ko) mice, showing obsessive compulsive disorder (OCD)-like behavior. MethodsAlongside the assessment of grooming, we performed [11C]ABP688 μPET/CT imaging in wildtype (wt; n=10) and ko (n=11) mice both at 3 and 9 months. Using the simplified reference tissue method (SRTM), the nondisplaceable binding potential (BPND) was calculated representing the in vivo availability of the metabotropic glutamate receptor 5 (mGluR5) in the brain with the cerebellum as a reference region. Longitudinal voxel-based statistical parametric mapping (SPM) was performed on BPND images. Results were verified using [11C]ABP688 ex vivo autoradiography, [3H]ABP688 in vitro autoradiography, and mGluR5 immunohistochemistry. ResultsCross-sectional comparisons revealed significantly increased grooming parameters in ko animals, at both time points. A significant longitudinal increase in % grooming duration (+268.25%; p<0.05) reflected aggravation of this behavior in ko mice. [11C]ABP688 μPET revealed significantly lower mGluR5 availability in the cortex, striatum, hippocampus, and amygdala of ko mice at both ages. A significant longitudinal BPND decline was present for ko mice (p<0.01: cortex −17.14%, striatum −19.82%, amygdala −23.57%; p<0.05: hippocampus −15.53%), which was confirmed by SPM (p<0.01). ConclusionSapap3 ko mice show a decline in mGluR5 availability in OCD relevant brain regions parallel to the worsening of OCD-like behavior. This demonstrates a potential role for [11C]ABP688 PET as a biomarker to monitor disease progression in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.