Abstract
BackgroundNon-alcoholic fatty liver disease (NAFLD) is becoming a pandemic. While multiple ‘hits’ have been reported to contribute to NAFLD progression to non-alcoholic steatohepatitis (NASH), fibrosis and liver cancer, understanding the natural history of the specific molecular signals leading to hepatocyte damage, inflammation and fibrosis, is hampered by the lack of suitable animal models that reproduce disease progression in humans. The purpose of this study was first, to develop a mouse model that closely mimics progressive NAFLD covering the spectrum of immune, metabolic and histopathologic abnormalities present in human disease; and second, to characterize the temporal relationship between sterile/exogenous danger signals, inflammation, inflammasome activation and NAFLD progression.MethodsMale C57Bl/6 mice were fed a high fat diet with high cholesterol and a high sugar supplement (HF–HC–HSD) for 8, 27, and 49 weeks and the extent of steatosis, liver inflammation, fibrosis and tumor development were evaluated at each time point.ResultsThe HF–HC–HSD resulted in liver steatosis at 8 weeks, progressing to steatohepatitis and early fibrosis at 27 weeks, and steatohepatitis, fibrosis, and tumor development at 49 weeks compared to chow diet. Steatohepatitis was characterized by increased levels of MCP-1, TNFα, IL-1β and increased liver NASH histological score. We found increased serum levels of sterile danger signals, uric acid and HMGB1, as early as 8 weeks, while endotoxin and ATP levels increased only after 49 weeks. Increased levels of these sterile and microbial danger signals paralleled upregulation and activation of the multiprotein complex inflammasome. At 27, 49 weeks of HF–HC–HSD, activation of M1 macrophages and loss of M2 macrophages as well as liver fibrosis were present. Finally, similar to human NASH, liver tumors occurred in 41% of mice in the absence of cirrhosis and livers expressed increased p53 and detectable AFP.ConclusionsHF–HC–HSD over 49 weeks induces the full spectrum of liver pathophysiologic changes that characterizes the progression of NAFLD in humans. NAFLD progression to NASH, fibrosis and liver tumor follows progressive accumulation of sterile and microbial danger signals, inflammasome activation, altered M1/M2 cell ratios that likely contribute to NASH progression and hepatic tumor formation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0552-7) contains supplementary material, which is available to authorized users.
Highlights
Non-alcoholic fatty liver disease (NAFLD) is becoming a pandemic
We report that this diet formulation causes cumulative progressive ‘pathogenic hits’ in well characterized sterile and microbial danger signals resulting in steatosis, inflammation, fibrosis and tumorigenesis that closely mimic NAFLD progression in humans
There was no significant difference in the liver/body weight ratio at the 8-week time point, but the liver–body weight ratio was significantly increased at both 27 and 49 weeks in the HF–HC–high fat diet (HFD) group compared to mice on the chow diet (Figure 1b)
Summary
Non-alcoholic fatty liver disease (NAFLD) is becoming a pandemic. While multiple ‘hits’ have been reported to contribute to NAFLD progression to non-alcoholic steatohepatitis (NASH), fibrosis and liver cancer, understanding the natural history of the specific molecular signals leading to hepatocyte damage, inflammation and fibrosis, is hampered by the lack of suitable animal models that reproduce disease progression in humans. The prevalence of obesity is increasingly recognized as a pandemic that has been responsible for over 3.4 million deaths in 2010 [1]. This condition affects both adults and children at an alarming rate with the well recognized adverse health risk for the development of metabolic diseases including non-alcoholic fatty liver disease (NAFLD). Current treatment options for NAFLD are limited and ineffective [7, 8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.