Abstract

Probabilistic planning subject to multi-objective probabilistic temporal logic (PLTL) constraints models the problem of computing safe and robust behaviours for agents in stochastic environments. We present novel admissible heuristics to guide the search for cost-optimal policies for these problems. These heuristics project and decompose LTL formulae obtained by progression to estimate the probability that an extension of a partial policy satisfies the constraints. Their computation with linear programming is integrated with the recent PLTL-dual heuristic search algorithm, enabling more aggressive pruning of regions violating the constraints. Our experiments show that they further widen the scalability gap between heuristic search and verification approaches to these planning problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.