Abstract
Genomic instability is a fundamental component of cancer progression. Subtraction hybridization identified a novel rodent gene, progression elevated gene-3 (PEG-3) whose expression directly correlates with cancer aggressiveness and progression. Moreover, ectopic expression of PEG-3 in rodent or human tumor cells produces an aggressive transformed phenotype. We demonstrate that PEG-3 expression in rodent tumor cells correlates directly with genomic instability as characterized by alterations in chromosome composition and structure. Additionally, elevated endogenous or ectopic expression of PEG-3 in rodent and human tumor cells, respectively, enhances gene amplification, as monitored by resistance to methothrexate (MTX) and amplification of the dihydrofolate reductase (dhfr) gene. Stable expression of PEG-3 in normal cloned rat embryo fibroblast (CREF) cells marginally elevates MTX resistance, but morphology remains unaltered and anchorage independence is not induced, suggesting that these phenotypes are separable in immortal cells and gene amplification may precede the acquisition of morphological and oncogenic transformation. The present studies document that stable, inducible, and transient expression of PEG-3 in cancer cells augments genomic instability. In these contexts, one mechanism by which PEG-3 influences cancer progression may be by preferentially facilitating the development of genomic changes in evolving cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.