Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201130, “Novel Progressing-Cavity-Pump Configurations Address Operational Challenges,” by Lonnie Dunn, SPE, Ryan Rowan, and Abhishek Prakash, Lifting Solution, et al., prepared for the 2020 SPE Virtual Artificial Lift Conference and Exhibition-Americas, 10-12 November. The paper has not been peer reviewed. While downhole progressing-cavity-pump (PCP) designs provide options for end users, the numerous products available, combined with a lack of industry standardization, can make selection and application challenging. The complete paper provides an overview of the development of a PCP concept and implementation, which is not included in this synopsis, and then summarizes two novel PCP configurations deployed to address specific operational challenges. Design and Manufacturing, Configuration 1 A novel PCP configuration was developed from phased design trials and experience in cold heavy-oil production with sand (CHOPS) wells. This configuration uses a modified rotor to create alternating sections of contact and noncontact within a conventional stator (Fig. 1). The rotor is landed in the stator and operated until there is a performance decline. Then, the rotor is repositioned to move the active section of the rotor into the areas of the stator where there originally was no contact and, as such, normally no associated damage. Keeping the length of the alternating sections short simplifies the surface rotor positioning process, allowing it to be performed riglessly. The main benefit of this is that, rather than having to pull the rod string and run a different rotor, the same rotor is used and repositioned through lifting of the rod string at surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.