Abstract

Aldose reductase (ALR2) is a crucial enzyme in the development of the major complications of diabetes mellitus. Very recently it has been demonstrated that the ARL2 inhibitor, fidarestat, significantly prevents inflammatory signals (TNF-α, LPS) that cause cancer (colon, breast, prostate and lung), metastasis, asthma, and other inflammatory diseases. Currently, fidarestat is in phase III clinical trial for diabetic neuropathy and was found to be safe. Thus the finding of novel, potent ARL2 inhibitors is today more than in the past in great demand as they can pave the way for a novel therapeutic approach for a number of diseases besides the diabetes. Herein, starting from the virtual screening-derived ALR2 inhibitor S12728 (1), a rational receptor-based lead optimization has been undertaken. The design and synthetic efforts here reported led to the discovery of several new compounds endowed with low micromolar/submicromolar activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.