Abstract
AbstractRedox flow batteries (RFBs) are a promising option for long‐duration energy storage (LDES) due to their stability, scalability, and potential reversibility. However, solid‐state and non‐aqueous flow batteries have low safety and low conductivity, while aqueous systems using vanadium and zinc are expensive and have low power and energy densities, limiting their industrial application. An approach to lower capital cost and improve scalability is to utilize cheap Earth‐abundant metals such as iron (Fe). Nevertheless, all‐iron RFBs have many complications, involving voltage loss from ohmic resistance, side reactions such as hydrogen evolution, oxidation, and most significantly electrode plating, and dendrite growth. To address these issues, researchers have begun to examine the effects of various alterations to all‐iron RFBs, such as adding organic ligands to form Fe complexes and using a slurry electrode instead of common materials such as graphite or platinum rods. Overall, progress in improving aqueous all‐iron RFBs is at its infant stage, and new strategies must be introduced, such as the utilization of nanoparticles, which can limit dendrite growth while increasing storage capacity. This review provides an in‐depth overview of current research and offers perspectives on how to design the next generation of all‐iron aqueous RFBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.