Abstract

Changes in brain dynamics accompany many, if not all, neuropsychiatric and neurological disorders. Even in health, however, the activity of global brain networks remains poorly understood. Although great progress has been made over the last decade in probing specific brain circuits, it has proven challenging to probe systems at the cellular level, while also observing their global causal effect. The recent development of optogenetic functional MRI has provided a key technological advancement in overcoming this problem. Using optogenetic functional MRI, it is now possible to observe whole-brain level network activity that results from modulating with millisecond timescale resolution the activity of genetically, spatially and topologically defined cell populations. This technology opens the doors for many new studies of neurological disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.