Abstract
We have developed an ammonia-sensitive material by coupling the Berthelot reaction to our polymerized crystalline colloidal array (PCCA) technology. The material consists of a periodic array of highly charged colloidal particles (110 nm diameter) embedded in a poly(hydroxyethyl acrylate) hydrogel. The particles have a lattice spacing such that they Bragg-diffract visible light. In the Berthelot reaction, ammonia, hypochlorite, and phenol react to produce the dye molecule indophenol blue in an aqueous solution. We use this reaction in our sensor by covalently attaching 3-aminophenol to the hydrogel backbone, which forms cross-links through the Berthelot mechanism. Ammonia reacts with hypochlorite, forming monochloramine, which then reacts with a pendant aminophenol to form a benzoquinone chlorimine. The benzoquinone chlorimine reacts with another pendant aminophenol to form a cross-link. The creation of new cross-links causes the hydrogel to shrink, which reduces the lattice spacing of the embedded colloidal array. This volume change results in a blue-shift in the diffracted light proportional to the concentration of NH3 in the sample. We demonstrate that the NH3 photonic crystal sensing material is capable of quantitative determination of concentrations in the physiological range (50-350 micromol NH3 L(-1)) in human blood serum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.