Abstract
Principal components analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to develop a multistep classification procedure for determining the presence of ignitable liquid residue in fire debris and assigning any ignitable liquid residue present into the classes defined under the American Society for Testing and Materials (ASTM) E 1618-10 standard method. A multistep classification procedure was tested by cross-validation based on model data sets comprised of the time-averaged mass spectra (also referred to as total ion spectra) of commercial ignitable liquids and pyrolysis products from common building materials and household furnishings (referred to simply as substrates). Fire debris samples from laboratory-scale and field test burns were also used to test the model. The optimal model's true-positive rate was 81.3% for cross-validation samples and 70.9% for fire debris samples. The false-positive rate was 9.9% for cross-validation samples and 8.9% for fire debris samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.