Abstract

Many advanced technologies based on particulate materials demand the availability of fine spherical powders or spherical powders of a narrow particle size class. Generally, high-pressure gas atomization (HPGA) is a close-coupled discrete jet atomization method and is one of the most effective methods of producing such powders. Development of HPGA nozzles with discrete jets resembling convergent–divergent (C–D) rocket nozzle designs, instead of the previous cylindrical jets, was conducted to increase atomization efficiency and uniformity and to reduce the required gas supply pressures. Results of compressible gas flow measurements on both types of HPGA nozzles revealed a steadily increasing trend of gas mass flow with gas supply pressure and a positive deviation from isentropic behavior that increases for increasing supply pressure. This has been attributed to an insufficient volume in the atomization nozzle gas manifold that experiences enhanced expansion cooling at increasing pressures. In experiments on 316L stainless steel, the atomization efficiency of the HPGA nozzle with C–D jets was higher than that of the HPGA nozzle with cylindrical jets, reflecting a lower gas/metal mass flow ratio. In other words, while the powder size distributions were nearly the same for all of the HPGA experiments, the HPGA nozzle with C–D jets utilized atomization gas with a significantly reduced operating pressure and mass flow rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.