Abstract

Current ignition designs require graded doped beryllium or CH capsules. This paper reports on the progress toward fabricating both beryllium and CH capsules that meet the current design criteria for achieving ignition on the National Ignition Facility (NIF) [S. Hann et al., Phys. Plasmas 12, 056316 (2005)]. NIF scale graded copper doped beryllium capsules have been made by sputter coating, while graded germanium doped CH capsules have been made by plasma polymer deposition. The sputtering process used for fabricating graded beryllium shells was produced with a void fraction of ∼5%. Varying the deposition parameters can lead to several different beryllium microstructures, which have been tuned to reduce the void size and fraction to within specifications. In addition, polishing of beryllium-coated shells reduces the outer surface roughness of shells to ignition specifications. Transmission electron microscopy has been used to characterize void fraction and grain structure of beryllium coatings. The plasma polymer deposition process has produced dense, void-free graded doped CH shells that nearly meet the ignition surface finish requirements. Layer thickness and dopant concentrations have been measured by quantitative contact radiography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.