Abstract

This short communication reports on achieving 18·8% total-area conversion efficiency for a ZnO/CdS/Cu(In,Ga)Se2/Mo polycrystalline thin-film solar cell. We also report a 15%-efficient, Cd-free device fabricated via physical vapor deposition methods. The Cd-free cell includes no buffer layer, and it is fabricated by direct deposition of ZnO on the Cu(In,Ga)Se2 thin-film absorber. Both results have been measured at the National Renewable Energy Laboratory under standard reporting conditions (1000 W/m2, 25°C, ASTM E 892 Global). The 18·8% conversion efficiency represents a new record for such devices (Notable Exceptions) and makes the 20% performance level by thin-film polycrystalline materials much closer to reality. We allude to the enhancement in performance of such cells as compared to previous record cells, and we discuss possible and realistic routes to enhance the performance toward the 20% efficiency level. Published in 1999 by John Wiley & Sons, Ltd. This article is a US government work and is in the public domain in the United States.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call