Abstract
We make progress towards proving the strong Eshelby's conjecture in three dimensions. We prove that if for a single nonzero uniform loading the strain inside inclusion is constant and further the eigenvalues of this strain are either all the same or all distinct, then the inclusion must be of ellipsoidal shape. As a consequence, we show that for two linearly independent loadings the strains inside the inclusions are uniform, then the inclusion must be of ellipsoidal shape. We then use this result to address a problem of determining the shape of an inclusion when the elastic moment tensor (elastic polarizability tensor) is extremal. We show that the shape of inclusions, for which the lower Hashin–Shtrikman bound either on the bulk part or on the shear part of the elastic moment tensor is attained, is an ellipse in two dimensions and an ellipsoid in three dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.