Abstract

Textile materials have been enriched in function at the composite level with continuous developments in the textile industry. Zinc oxide (ZnO) nanoparticles (ZnO-NPs) are strongly influenced by ultraviolet (UV) filter, antifungal, high catalysis, and semiconductor/piezoelectric coupling characteristics. Therefore, the antibacterial property and UV resistance of ZnO-NP materials are zcomprehensively analysed to provide a basis for applying ZnO-NP in the textile industry. In addition, the textile preparation and application of ZnO-NP in piezoelectric power generation is discussed. Based on relevant documents for ZnO-textile industry applications, scanning electron microscopy analysis, biological activity analysis, and UV transmittance analysis of textiles containing composite materials prove that textiles based on ZnO-based composite materials (ZnO-NP materials) have antibacterial properties and UV resistance. The antibacterial property and UV resistance of ZnO-NP materials are analysed comprehensively to provide a basis for applying ZnO-NP in the textile industry. After the photocatalytic reaction, its practical application as slurry type suspensions is limited because of the difficulty of separating the catalyst particles. In terms of its piezoelectric power generation characteristics, intensity of current voltage analysis and X-ray diffraction analysis reveal that textiles based on ZnO-NP materials have obvious semiconductor characteristic and obvious current enhancement signals locally, indicating that the textiles can achieve better piezoelectric properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call