Abstract

AbstractLithium–sulfur (Li–S) batteries are one of the most promising next‐generation battery types for their high energy density and low cost. On the other hand, safety issues and poor cyclability strongly limit practical application. Solid‐state electrolytes (SSEs) can present as high ionic conductivity as aprotic electrolytes and eventually avoid the shuttle effect, which provides an ultimate solution for safe Li–S batteries with good cyclability. In this review, the recent achievements in all‐solid‐state Li–S batteries based on inorganic SSEs are summarized. Furthermore, the main attentions are paid to the interfaces, including metallic lithium|SSEs, SSEs|SSEs, and composite sulfur cathode|SSEs. The potential approaches to deal with these interfacial issues are proposed as well, such as composite SSEs with an asymmetric structure to enhance their compatibility with lithium anodes and sulfur cathodes, adding Li2O or LiF and increasing the densification to reduce the grain boundary resistance, and nanomaterials used to improve the kinetic process in cathode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.