Abstract

ABSTRACTIntroduction: Cartilage tissue engineering has rapidly developed in recent decades, exhibiting promising potential to regenerate and repair cartilage. However, the origin of a large amount of a suitable seed cell source is the major bottleneck for the further clinical application of cartilage tissue engineering. The use of a monoculture of passaged chondrocytes or mesenchymal stem cells results in undesired outcomes, such as fibrocartilage formation and hypertrophy. In the last two decades, co-cultures of chondrocytes and a variety of mesenchymal stem cells have been intensively investigated in vitro and in vivo, shedding light on the perspective of co-culture in cartilage tissue engineering.Areas covered: We summarize the recent literature on the application of heterologous cell co-culture systems in cartilage tissue engineering and compare the differences between direct and indirect co-culture systems as well as discuss the underlying mechanisms.Expert opinion: Co-culture system is proven to address many issues encountered by monocultures in cartilage tissue engineering, including reducing the number of chondrocytes needed and alleviating the dedifferentiation of chondrocytes. With the further development and knowledge of biomaterials, cartilage tissue engineering that combines the co-culture system and advanced biomaterials is expected to solve the difficult problem regarding the regeneration of functional cartilage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.