Abstract

AbstractWe give an introduction into the method of quantum molecular dynamics simulations which combines density functional theory with classical molecular dynamics. This method has demonstrated its predictive power in determining the thermophysical properties of matter under extreme conditions as found, e.g., in astrophysical objects like giant planets and brown dwarfs. Such extreme states of matter can also be probed by state-of-the-art shock wave experiments in the laboratory. We give exemplary ab initio results for the behavior of the simplest and most abundant elements hydrogen and helium under extreme conditions. In addition, we also show results for more complex molecular systems such as water. The light elements H and He, the hydrides of C (CH4), N (NH3), and O (H2O) and, in particular, mixtures of these systems have rich high-pressure phase diagrams which are important for the structure, evolution and magnetic field of gas giant planets like Jupiter and ice giant planets like Neptune. Finally, we describe the impact of these results on the design of advanced interior, evolution, and dynamo models and give exemplary results for solar and extrasolar giant planets.KeywordsGiant PlanetHost StarGeneralize Gradient ApproximationGround State DensitySuperionic PhaseThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.