Abstract

Physics based integrated modelling of the baseline scenario for a Fusion Nuclear Science Facility based on the Advanced Tokamak concept (FNSF-AT) (Chan et al 2010 Fusion Sci. Technol. 57 66) has found steady-state equilibria with good stability and controllability properties at the fusion performance required to accomplish FNSF's nuclear science mission with margin. 2D divertor analysis for this baseline scenario predicts that peak heat flux <10 MW m−2 can be obtained even with scrape-off layer power width ∼1 mm. Using this baseline fusion performance, high fidelity and high-resolution 3D neutronics calculations show acceptable cumulative end-of-life organic insulator dose levels in all the device coils, and TBR >1. Two current drive scenarios, two divertor configurations, and two blanket concepts have been analysed. FNSF-AT would complement ITER in addressing science and technology gaps to a commercially attractive DEMO, and could enable a DEMO construction decision triggered by the achievement of Q = 10 in ITER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.