Abstract
Rice is a vital component in the diets of many people worldwide, supplying necessary calories for subsistence. Nevertheless, the yield of this crucial agricultural crop is consistently hindered by a range of biotic stresses. Out of these, rice blast, claused mainly by the fungus Magnaporthe oryzae, poses a significant menace to worldwide rice cultivation as well as yield in recent years. The consequences are particularly crucial given the current climate change challenges. In recent decades, substantial progress has been achieved in the development of efficient ways to manage rice blast disease. These procedures entail using a variety of rice genetic resources to find, map, clone, and functionally validate individual resistance (R) genes and quantitative trait loci (QTLs) that provide long-lasting resistance to rice blast disease. Moreover, the replication and practical confirmation of homologous avirulence (Avr) genes in various M. oryzae strains have been crucial in comprehending the fundamental molecular mechanisms of host–pathogen interactions. This article offers a thorough examination of the cloning and functional verification of different R genes and QTLs linked to resistance against rice blast disease. The complex interplay between R–Avr pairings, which contributes to the development of resistance against rice blast throughout a wide range, is thoroughly explained. Finally, this study explores the most recent progress in next-generation sequencing (NGS) and genome editing technologies (GETs), examining their potential uses in improving the treatment of rice blast disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.