Abstract

This work examines the new possibilities introduced with the arrival of commercially available high-resolution continuum source atomic absorption spectrometers for the determination of metalloids (B, Si, Ge, As, Se, Sb and Te) and non-metals (P, S, F, Cl, Br, I and N-based species), such as the improved potential to detect and correct for spectral overlaps and the strategies available to correct for matrix effects. In particular, and considering the increasing number of papers reporting on the use of molecular absorption spectrometry using graphite furnaces and flames as vaporizers, the work discusses in detail the advantages and limitations derived from the monitoring of molecular spectra from a practical point of view, in an attempt to guide future users of the technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.