Abstract
Continuous fiber-reinforced SiC matrix composites, as the most common ceramic matrix composites (CMCs), have been extensively studied in the last two decades due to low density, high strength at high temperatures, good corrosion resistance, and thermal shock resistance. Matrix modification is an effective way to obtain high-performance CMCs by the combination of tailored fiber, interphase, and matrix. This paper summarized the progress on SiC-based CMCs containing modified matrix, and the advantages brought by the hybrid matrices were revealed. For different application fields, different second phases were introduced into SiC matrix, such as B-containing phases to improve the oxidation resistance, ultra-high-temperature ceramics to improve the ablation resistance, and high electrical conductivity phases to improve the electromagnetic interference shielding properties and the phases with low complex permittivity to adjust the dielectric properties to improve the electromagnetic absorbing performance. With the formation of hybrid matrices by introducing second phases, it can essentially improve the environment performance and extend the application fields of SiC-based CMCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.