Abstract
The power to move aircraft control surfaces has advanced from being manually generated (by the pilot and transmitted via rods and links) to electrically transmitted (via wires) to operate control surface actuators. Various hydraulic, electromagnetic, and electromechanical architectures have been developed to provide the necessary power and to maintain the expected redundancy. Numerous aircraft actuator system designs have been proposed in the past decades, but a comprehensive review has yet to be undertaken. This review paper aims to fill this gap by providing a critical review of the actuation system designs developed for a variety of aircraft. The review focuses on aircraft actuator system designs, namely: electrohydraulic actuator systems, electromechanical actuator systems, and the force-fighting effect in redundant actuation systems. The significance and operational principle of each actuator system are critically analysed and discussed in the review. The paper also evaluates the solution proposed to address force-fight equalization (or force-fight cancelation) in force or torqued-summed architectures. Future trends in redundant actuation system development with reduced force-fighting effect in aircraft actuator systems are also addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.