Abstract

Since the first plant genome of Arabidopsis thaliana has been sequenced and published, genome sequencing technologies have undergone significant changes. New algorithms, sequencing technologies and bioinformatic approaches were adopted to obtain genome, transcriptome and exome sequences for model and crop species, which have permitted deep inferences into plant biology. As a result of an improved genome assembly and analysis methods, genome sequencing costs plummeted and the number of high-quality plant genome sequences is constantly growing. Consequently, more than 300 plant genome sequences have been published over the past twenty years. Although many of the published genomes are considered incomplete, they proved to be a valuable tool for identifying genes involved in the formation of economically valuable plant traits, for marker-assisted and genomic selection and for comparative analysis of plant genomes in order to determine the basic patterns of origin of various plant species. Since a high coverage and resolution of a genome sequence is not enough to detect all changes in complex samples, targeted sequencing, which consists in the isolation and sequencing of a specific region of the genome, has begun to develop. Targeted sequencing has a higher detection power (the ability to identify new differences/variants) and resolution (up to one basis). In addition, exome sequencing (the method of sequencing only protein-coding genes regions) is actively developed, which allows for the sequencing of non-expressed alleles and genes that cannot be found with RNA-seq. In this review, an analysis of sequencing technologies development and the construction of “reference” genomes of plants is performed. A comparison of the methods of targeted sequencing based on the use of the reference DNA sequence is accomplished.

Highlights

  • Since the first plant genome of Arabidopsis thaliana has been sequenced and published, genome sequencing technologies have undergone significant changes

  • Many of the published genomes are considered incomplete, they proved to be a valuable tool for identifying genes involved in the formation of economically valuable plant traits, for marker-assisted and genomic selection and for comparative analysis of plant genomes in order to determine the basic patterns of origin of various plant species

  • Since a high coverage and resolution of a genome sequence is not enough to detect all changes in complex samples, targeted sequencing, which consists in the isolation and sequencing of a specific region of the genome, has begun to develop

Read more

Summary

Introduction

Since the first plant genome of Arabidopsis thaliana has been sequenced and published, genome sequencing technologies have undergone significant changes. Такие модели геномов служат основой для решения огромного числа задач, как связанных с поиском генов, идентификацией маркеров, так и опирающихся на знание детальной структуры генома – сравнительной геномики, идентификации синтенных групп хромосом.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call