Abstract

In recent years, as a class of advanced additive manufacturing (AM) technology, photocurable 3D printing has gained increasing attention. Based on its outstanding printing efficiency and molding accuracy, it is employed in various fields, such as industrial manufacturing, biomedical, soft robotics, electronic sensors. Photocurable 3D printing is a molding technology based on the principle of area-selective curing of photopolymerization reaction. At present, the main printing material suitable for this technology is the photosensitive resin, a composite mixture consisting of a photosensitive prepolymer, reactive monomer, photoinitiator, and other additives. As the technique research deepens and its application gets more developed, the design of printing materials suitable for different applications is becoming the hotspot. Specifically, these materials not only can be photocured but also have excellent properties, such as elasticity, tear resistance, fatigue resistance. Photosensitive polyurethanes can endow photocured resin with desirable performance due to their unique molecular structure including the inherent alternating soft and hard segments, and microphase separation. For this reason, this review summarizes and comments on the research and application progress of photocurable 3D printing of photosensitive polyurethanes, analyzing the advantages and shortcomings of this technology, also offering an outlook on this rapid development direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.