Abstract

AbstractModel scale tests of modern ‘open rotor’ propulsor concepts that have potential for significant fuel burn reduction for aircraft applications were completed at NASA Glenn Research Center. The recent test campaign was a collaboration between NASA, FAA, and General Electric (GE). GE was the primary industrial partner, but other organisations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. The open rotor is a modern version of the UnDucted Fan (UDF®) that was flight tested in the late 1980s through a partnership between NASA and GE. The UDF® was memorable for its scimitar shaped propeller blades and its unique noise signature. Design methods of the time were not able to optimise for both high aerodynamic efficiency and low noise simultaneously. Contemporary CFD/CAA based design methods can produce open rotor blade designs that maintain efficiency with acceptable acoustic signatures. Tests of two generations of new open rotor designs were conducted in the 9’ × 15’ Low Speed Wind Tunnel and the 8’ × 6’ Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic performance and acoustic data were obtained for take-off, approach and cruise conditions in isolated and semi-installed configurations. Additional detailed flow diagnostic measurements and acoustic measurements, including canonical shielding configurations, were obtained by NASA. NASA and GE conducted joint systems analysis to evaluate the performance of the new blade designs on a Boeing 737 class aircraft. The program demonstrated a 2-3% improvement in overall net efficiency relative to the best efficiency designs of the 1980s while nominally achieving 15-17 EPNdB noise margin to Chapter 4 (at a Technology Readiness Level of 5) for a notional aircraft system defined by NASA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.