Abstract

In this expository paper we describe the study of certain non-self-adjoint operator algebras, the Hardy algebras, and their representation theory. We view these algebras as algebras of (operator valued) functions on their spaces of representations. We will show that these spaces of representations can be parameterized as unit balls of certain $W^{*}$-correspondences and the functions can be viewed as Schur class operator functions on these balls. We will provide evidence to show that the elements in these (non commutative) Hardy algebras behave very much like bounded analytic functions and the study of these algebras should be viewed as noncommutative function theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.