Abstract

Pig-to-human organ transplantation provides an alternative for critical shortage of human organs worldwide. Genetically modified pigs are promising donors for xenotransplantation as they show many anatomical and physiological similarities to humans. However, immunological rejection including hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), immune cell-mediated rejection, and other barriers associated with xenotransplantation must be overcome with various strategies for the genetic modification of pigs. In this review, we summarize the outcomes of genetically modified and cloned pigs achieved by Chinese scientists to resolve the above-mentioned problems in xenotransplantation. It is now possible to knockout several porcine genes associated with the expression of sugar residues, antigens for (naturally) existing antibodies in humans, including GGTA1, CMAH, and β4GalNT2, and thereby preventing the antigen-antibody response. Moreover, insertion of human complement- and coagulation-regulatory transgenes, such as CD46, CD55, CD59, and hTBM, can further overcome effects of the humoral immune response and coagulation dysfunction, while expression of regulatory factors of immune responses can inhibit the adaptive immune rejection. Furthermore, transgenic strategies have been developed by Chinese scientists to reduce the potential risk of infections by endogenous porcine retroviruses (PERVs). Breeding of multi-gene low-immunogenicity pigs in China is also presented in this review. Lastly, we will briefly mention the preclinical studies on pig-to-non-human primate xenotransplantation conducted in several centers in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call