Abstract

General anaesthesia is used widely in surgery and during interventional medical procedures, but little is known about the exact neural mechanisms for how unconsciousness arises from administering an anaesthetic drug. Computational modelling of brain dynamics has already provided valuable insights into the neural circuitry involved in generating this state. Current theories for the origin of electroencephalographic (EEG) features in brain activity under GABAergic anaesthetic drugs have been proposed through modelling results. While much attention has been paid to describing alpha and delta oscillations, burst suppression, paradoxical excitation and the possibility of hysteresis during transitions to and from unconscious state, these models have focused only on the role of the thalamocortical system. Recent empirical findings suggest that anaesthetic drugs may act directly on the neural circuitry regulating sleep and wake states and circadian rhythms in the hypothalamus. Coupled with the common behavioural features found in physiological sleep and general anaesthesia, this evidence serves as a foundation for the ‘shared circuits hypothesis’ which proposes that anaesthetic-induced unconsciousness arises predominantly through modulation of the hypothalamic sleep-wake switch. This paper reviews the key findings from computational models describing brain states during the administration of anaesthetic drugs, with a focus on those enhancing GABAergic inhibition given their widespread use in practice and that almost all models of anaesthesia have focused on these drugs. We draw physiological and behavioural links between brain states during sleep and anaesthesia, and aim to highlight the importance of computational modelling in advancing our understanding of anaesthesia by considering sleep and circadian mechanisms in generating unconsciousness in future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.