Abstract

Solid oxide fuel cell (SOFC) is a clean and high-efficiency electric power generation device with promising application prospects. The SOFC uses the ceramic material as electrodes and electrolytes. Due to its high working temperature, mechanical failure is one of the most significant factors leading to the decrease of SOFC performance and lifetime. In-situ experimental measurements are quite limited in SOFCs. Therefore, a numerical simulation based on macro-scale mechanical models is generally employed for structure optimization of a single cell and stack. Progress in macro-scale mechanical effects of SOFCs is reviewed in this study. The principles and mathematical models of mechanical effects include residual strain, oxidation strain, chemical expansion, thermal ain, and creep strain in different SOFC manufacturing and operating stages are introduced. The latest development in the theoretical study and numerical simulation on different mechanical effects, as well as the electro-chemo-mechanical coupling effects, are summarized. In the last, the prospects of macro-scale mechanical effects investigation of SOFCs are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call