Abstract

An important development in the field of NMR spectroscopy has been the advent of hyperpolarization approaches, capable of yielding nuclear spin states whose value exceeds by orders-of-magnitude what even the highest-field spectrometers can afford under Boltzmann equilibrium. Included among these methods is an ex situ dynamic nuclear polarization (DNP) approach, which yields liquid-phase samples possessing spin polarizations of up to 50 %. Although capable of providing an NMR sensitivity equivalent to the averaging of about 1 000 000 scans, this methodology is constrained to extract its "superspectrum" within a single-or at most a few-transients. This makes it a poor starting point for conventional 2D NMR acquisition experiments, which require a large number of scans that are identical to one another except for the increment of a certain t(1) delay. It has been recently suggested that by merging this ex situ DNP approach with spatially encoded "ultrafast" methods, a suitable starting point could arise for the acquisition of 2D spectra on hyperpolarized liquids. Herein, we describe the experimental principles, potential features, and current limitations of such integration between the two methodologies. For a variety of small molecules, these new hyperpolarized ultrafast experiments can, for equivalent overall durations, provide heteronuclear correlation spectra at significantly lower concentrations than those currently achievable by conventional 2D NMR acquisitions. A variety of challenges still remain to be solved before bringing the full potential of this new integrated 2D NMR approach to fruition; these outstanding issues are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.